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Process Synchronization: 

Process synchronization means sharing system resources by process in a such way 

that concurrent access to shared data is handled thereby minimizing the chance 

of inconsistent data. 

 Maintaining data consistency demands mechanisms to ensure synchronized 

execution of co-operating processes. 

 

Critical section problem 

A critical section is a code segment that accesses shared variables and has 

to be executed as an atomic action. It means that in a group of co-operating 

processes, at a given point of time, only one process must be executing its 

critical section. If other processes also want to execute its critical section, it 

must wait until the first one finishes. 

Critical section: 

It is the part of the program where shared resources are accessed by 

various processes. 

It is the place where shred variable, resources are placed. 
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Entry section 

Critical section 

Exit section 

Remainder section 

While (True); 

Rest of the section 

The critical part 

Controls the entry into critical section 

and gets a Lock on required resources. 

Removes the lock 

from the resources 

and let the others 

know that its critical 

section is over 

General structure of a typical process Pi 



Solution to Critical section Problem 

A solution to the critical section problems must satisfy the following three 

conditions: 

1. Mutual exclusion 

2. Progress 

3. Bounded waiting 

4. No assumption related to H/W speed 

 

1. Mutual exclusion 

Out of a group of co-operating processes, only one process can be in its 

critical section at a given point of time. 

2. Progress: 

If no process is in its critical section and if one or more process wants to 

execute in critical section than one of these process must be allowed to get 

into its critical section. 

3. Bounded waiting: 

After a process makes a request for getting into its critical section, there 

is a limit for how many other processes can get into their critical section, 

before this process’s request is granted. So after the limit time is 

reached, system must grant the process permission to get into its critical 

section. 

4. No assumption related to H/W speed 

 

Synchronization H/W: 

Many systems provide H/W support for critical section code. The critical 

section problem could be solved easily in a single –processor 

environment if we could disallow interrupts to occur while a shred 

variable or resources is being modified. 

In this manner, we could be sure that the current sequence of 

instruction would be allowed to execute in order without preemption. 

            



 Unfortunately, this solution is not feasible in a multiprocessor             

Environment. 

 Disabling interrupt on a multiprocessor environment can be time 

consuming as the message is passed to all the processors. 

 

 

Mutex Locks 

As the synchronization H/W solution is not easy to implement for everyone, 

a strict S/w approach called Mutex Locks was introduced. In this approach, 

in the entry section code, a Lock is required over critical resources modified 

and used inside critical section and in the exit section that Lock is released. 

As the resources are locked while a process executes its critical section 

hence no other process can access it. 

 

Two process solution: 

This algorithm is restricted only for two (P0, P1) process. Processes may 

share some common variables to synchronize their actions. 

The process are numbered P0 and P1 . In general if one process is Pi   then 

other one is Pj where j=1-i. 

Algorithm-1 

Share variable :int turn 

The value of turn either 0 or 1 

Initially , turn is set to 0(turn=0) 

If turn ==i, then Pi can enter it critical section. 

The structure of process Pi 

while (True) 
{ 
while(turn != i ); 
critical section. 
turn=j 
remainder section 
} 



Explanation: 
 
 

 

 

 

 

 

 It satisfies the mutual exclusion but not progress because it 

always depends on other process. 

 Mutual exclusion is preserved 

 The progress requirement is not satisfied. 

 

Algorithm2 

Shared variables 
Boolean falg[2]; 
Initially flag[0]=flag[1]=false; 
If flag[i]=true Pi  is ready to enter its critical section . 

 

 
 
while (true) 
{ 
flag [i]=true. 
while (flag[i]); 
critical section. 
flag[i]=false; 
Remaider section. 
} 

 

 

P0         P1 

While(1)     while(1) 
{      {  while(turn!=1); 
While(turn!=0);                              critical section 
Critical section              Turn=0; 
Turn=1; 
Remainder section           Remainder section 
}       } 
 

 

 

 

       

Turn=0 



Explanation: 

 

 

 

 

 

 

 

 

           In this algorithm: 

1. Mutual exclusion is preserved 

2. The progress requirement is not satisfied 

(Since flag [0] =true and flag [1] =true; p0 and p1 are looping forever in 

their respective while statements  

 

 

 

Algorithm3(Peterson’s Solution) 

 

Shared variables  

by combining the key ideas  of algorithm1 and 2 . 

Boolean flag[2]; 

int turn 

 

 

 

 

 

 

P0         P1 

while(1)     while(1) 
{      {     flag[1]=T 
flag[0]=T 
while(flag[1]);                              while(flag[0]); 
critical section      critical section 
 flag[0]=F                flag[0]=F 
                                                                      
}       } 
 

 

 

 

       

 

 

          flag 

0          1 

F                 F 



 

Structure of Pi 

 

while (True) 

{ 

flag[i]=true; 

Turn =j; 

while ((turn==j && flag[j]==T); 

critical section;  

flag[i]=false; 

Remainder section; 

} 

Explanation:  

 

 

 

 

 

 

 

 

 

1. Mutual exclusion is preserved 

2. The progress requirement is satisfied 

3. The bounded –waiting requirement is met. 

 

 

 

P0 

while(1) 
{ 
flag[0]=T 
turn=1; 
while (turn==1 and 
flag[1]==T); 
critical section 
flag[0]=F 
} 
 

 

 

 

 

 

 

P1 

while(1) 
{ 
flag[1]=T 
turn=0; 
while (turn==0 and 
flag[0]==T); 
critical section 
flag[1]=F 
} 
 

 

 

 

 

 

 

Set  

flag 

 

                 Turn =0   / 1 

0               1

 

      F      F 



Semaphore 

Dijkstra proposed the concept of semaphore in 1965. Semaphore provides 

general purpose solution to impose mutual exclusion among concurrently 

executing processes, where many processes want to execute in their critical 

section but only one at a time is allowed and rest all other are excluded.  

A semaphore basically consists of an integer variable S, shared by processes. 

S is a protected variable that can only be accessed and manipulate by two 

operation:- wait() and signal() originally defined P( for wait) and V(for signal) by 

Dijkstra. 

 Wait() and signal() are semaphore primitives 

 The wait is sometimes called down() and signal is called up(). 

 Each semaphore has a queue associated with it known as semaphore 

queue 

 The wait and signal primitives ensures that one process at a time enters in 

its critical section and rest all other processes wanting to in their critical 

sections are kept waiting in the semaphore queue. 

 

A semaphore S is an integer variables that, apart from initialization, is 

accessed only through two standard atomic operations i.e wait () and signal 

(). 

Here wait means to test and signal means to increment 

The classical definition of wait() is : 

wait() 

{ 

while (S<=0); 

//busy wait 

S=S-1; 

} 

 

Let us see how it implements mutual 

exclusion. Let there be two 

processes P1 and P2 and a 

semaphore s is initialized as 1. Now 

if suppose P1 enters in its critical 

section then the value of semaphore 

s becomes 0. Now if P2 wants to 

enter its critical section then it will 

wait until s > 0, this can only happen 

when P1 finishes its critical section 

and calls V operation on semaphore 

s. This way mutual exclusion is 

achieved. 



The classical definition of signal() is: 

signal() 

{ 

S=S+1; 

} 

All modification to the integer value of the semaphore in the wait() and signal() 

operations must be executed indivisibly: i.e when one process modifies the 

semaphore value no other process can simultaneously modify that same 

semaphore value. 

In addition, in the case of wait(S), the testing of the integer value of S i.e S<=0, as 

well as its possible modification(S--), must be executed without interruption. 

 

 

Do  

 

 

 

 

 

 

  

 

 

 

 

 

Entry section 

Critical section 

Exit section 

Remainder section 

While (True); 

Rest of the section 

The critical part 

Controls the entry into critical section 

and gets a Lock on required resources. 

Removes the lock 

from the resources 

and let the others 

know that its critical 

section is over 

General structure of a typical process Pi 

Wait() 

Signal () 



Properties of semaphore: 

1. It is simple and always have a non-negative integer value 

2. Works with many processes 

3. Can have many different critical sections with different semaphores 

4. Each critical section has unique access semaphores. 

5. Can permit multiple processes into critical section at once, if desirable. 

6. Solution to critical section 

7. Act as resource  management 

8. It also decide the order of execution among the  process( n-process) 

Usage of semaphore 

1. Counting semaphore 

2. Binary semaphore 

1. Counting semaphore:  

 The value of counting semaphore can range over an unrestricted domain(-

∞ to ∞) 

 Counting semaphores can be used to control access to a given resource 

consisting of finite number of instances. 

 The semaphore is initialized to the number of resources available. 

 Each processes that wishes to use a resource performs a wait() operation 

on the semaphore (thereby decrementing the count) 

 When a process releases a resource, it performs a signal () operation 

(incrementing the count). 

 When a count for the semaphore goes to all ’0’,all resources are being 

used. 

 After that, processes that wish to use a resource will block until the count 

becomes greater than ‘ 0’.  

 

2. Binary semaphore: 

This is also known as mutex lock. It can have only two values – 0 and 1. Its 

value is initialized to 1. It is used to implement the solution of critical 

section problem with multiple processes. 

 



Implementation semaphore( counting semaphore) 

Semaphore is defined as: 
typedef struct 

{ 

int count; 

struct  processQueue queue; 

}semaphore; 

 

The wait is defined as: 

 

wait(semaphore S) 

{ 

S.count--; 

if(S.count<0) 

{ 

/*perform block operation and move the process to the semaphore queue* 

or put process(PCB) in suspended list/ 

 sleep() or block (); 

} 

} 

The signal is defined as: 

 

Signal(S) 

{ 

S.count++; 

If(S.count<=0) 

{ 

/* semaphore queue is not empty, perform wakeup and move the first 

process from semaphores queue to the ready queue or remove a process 

(P) from suspended list*/ 

wakeup(P); 

} 

} 

 

while (true) 

{ 

//entry section 

Wait(S); 

<Critical section> 

//exit section 

Signal(S); 

} 



 

 

 

 

Initially the value of semaphore variables S.count=1; 

Let P1,P2,P3 

S.count                                                                                         For P1 

Wait(S) Signal(S) 

S.count-- If(s.count<0

) move the 

process to 

the 

semaphore 

queue 

S.count++ If(S.count<=0) 

Move the first process from 

semaphore queue to the ready 

queue 

1 0 false - - 

 So P1 enters in its critical section and value of S.count=0                                              

Mean while P2 also enters it its critical section 

                                                                        For P2 

Wait(S) Signal(S) 

s.count-- If(s.count<0

) move the 

process to 

the 

semaphore 

queue 

S.count++ If(S.count<=0) 

Move the first process from 

semaphore queue to the ready 

queue 

-1 true - - 
 

                     Mean while P3 also enters it its critical section 

                                                                                         For P1 

Wait(S) Signal(S) 

s.count-- If(S.count<

0) move 

the process 

to the 

semaphore 

queue 

S.count++ If(S.count<=0) 

Move the first process from 

semaphore queue to the ready 

queue 

-1 -2 true - - 

              Mean while P1 finish its execution in its critical section and is in exit section 

 

0 

Semaphore 

Queue 

P2 

P3 



                                                                                         For P1 

Wait(S) Signal(S) 

S.count-- If(s.count<0

) move the 

process to 

the 

semaphore 

queue 

S.count++ If(S.count<=0) 

Move the first process from 

semaphore queue to the ready 

queue 

-2 - - -1 True, so the moves first 

process P2 from 

semaphore queue to the 

ready queue 
 

 

 

S.count Mean while P2 finish its execution in its critical section and is in exit section 

                          For P2 

Wait(S) Signal(S) 

S.count-- If(S.count<0) 

move the 
process to the 
semaphore 
queue 

S.count++ If(S.count<=0) 

Move the first process from 
semaphore queue to the ready 
queue 

-1 - - 0 True, so the moves first process P3 
from semaphore queue to the ready 
queue 

So P3 enters into its Critical section and value of S.count=0 

NOW P3 finish its execution in its critical section and is in exit section 

                                                                             For P3 

S.count                                                                                         For P3 

Wait(S) Signal(S) 

S.count-- If(s.count<0

) move the 

process to 

the 

semaphore 

queue 

S.count++ If(S.count<=0) 

Move the first process from 

semaphore queue to the ready 

queue 

0 - - 1 - 

 When all the process in the semaphore queue are finished, means semaphore queue are 
empty, the semaphore variable S.count again return to its initial value 1 



 The concept of semaphore queues ensures that no process go into 

busy waiting. Busy waiting is a condition in which if one process 

is executing in its critical section any other process wants to enter 
in its critical section then that process needs to check some 

condition in its entry section in continuous loop. This continuous 

looping is wastage of CPU cycle in a multiprogramming system 
where that CPU cycle can be used for some other productive work. 

The process waiting to execute in its critical section is moved to 

the semaphore queue till it get a chance to enter in its critical 
section without CPU engagement and this saves lot of CPU Time. 

 

 Moving the process to the semaphore queue is called block() 

operation and changes the state of that process from running state 

to waiting state. Likewise removing the process from semaphore 
queue and placing it in the ready queue is called wakeup(). The 

wakeup() operation resumes the process from waiting state to 

ready state so that process can enter in its critical section. Both 
block and wakeup() operations are performed by the operating 

system as a basic system call. 
 

Q.A Counting Semaphore was initialized to 12. then 10P (wait) and 

4V (Signal) operations were computed on this semaphore. What is 
the result? 

Ans: S = 12 (initial)    

10 p (wait) :   

SS = S -10 = 12 - 10 = 2    

then 4 V :    

SS = S + 4 =2 + 4 = 6   

Hence, the final value of counting semaphore is 6. 

 

 

 

 



Binary Semaphore Implementation: 
 

Down ( semaphore S) 

{ 

if(S.value==1) 

{ 

S.value=0; 

} 

else 

{ 

/*perform block operation and move the process to the 

semaphore queue* or put process(PCB) in suspended list/ 

 Sleep() or block (); 

                 }} 

 

 

Up(semaphore S) 

{ 

if (semaphore queue is empty) 

{ 

S.value=1; 

} 

else 

               { 

          /* semaphore queue is not empty, perform wakeup( ) and move the first 

process from semaphores queue to the ready queue or remove a process (P) from 

suspended list*/ 

                wakeup(P); 

                                } 

} 

 
 

 

P1 

Down(s) 

CS 

Up(S) 

P2 

Down(s) 

CS 

Up(S) 

 

Let S.vaue=1 



Classical problem of Synchronization: 

                      OR   

Classical problem in Concurrency 

 Reader –Writers problem 

 Dining Philosopher Problem( Assignment ) 

 Sleeping Barber Problem( Assignment) 

 

 

 

Reader –Writers problem 

 

Definition: There is a data containing some files ,records etc that is shared among 

the number of concurrent processes. The processes that reads the data from that 

common shared data area are called reader processes and processes that perform 

write operation(writing new data value or updating or modifying the data value) on 

the data stored in common shared data area are called writer processes. The 

various conditions that need to take care in Reader-writer case are: 

 Any number of reader processes can simultaneously read the data from 

common shared data area but only one writer at a time may write to that 

common shared data area. 

 If any of the writer process is writing to common shared data area, then no 

reader processes are allowed to read it till the writer process has finished. 

 If there is at least one reader reading the common data area,no writer 

processes are allowed to that common data area. 

The reader-writer problem solution using semaphores consists of two binary-  

semaphores- mutex and rw_mutex and one integer variable 

NumberOfReaders(rc).The semaphore rw_mutex is shared by the all the processes 

and the semaphore mutex and the integer variable NumberOfReaders(rc) is shared 

by reader processes only. Here, variable NumberOfReaders(rc) keep track of how 

many reader processes are reading the common shared data at a time, and mutex 

provide mutual exclusion among reader processes when variable 

NumberOfReaders(rc) is incremented or decremented .The semaphore rw_mutex 

which is common to both readers and writers processes ensures that when one 

writer process is using the common data area, no other reader or writer processes 

can access that common data area. 



 

 

 

 

 

void Reader ( ) 

{ 

while (true) 

{ 

Down (mutex) 

rc=rc+1; 

if(rc==1) Down (rw_mutex); 

 UP(mutex); 

 

 

 

Down(mutex); 

rc=rc-1; 

if (rc==0) then UP(rw_mutex); 

UP(mutex); 

Process_data; 

} 

} 

 

void Writer() 

{ 

while true() 

{ 

Down (rw_mutex); 

 

 

 

 

UP(rw_mutex); 

} 

} 

Case 1:  R-W->Problem  

Case 2: W-R->Problem 

Case 3: W-W->Problem 

Case4:  R-R->No Problem 

READER PROCESS WRITER PROCESS 

int rc=0 

Semaphore mutex =1; 
Semaphore rw_mutex=1; 
 

//Critical section 

//Database 
 

//Critical section 

//Database 
 



Dead Lock 

 In a multiprogramming system, a number process compete for limited no.of 

resources and if a resources is not available at that instance then process 

enters into waiting states 

 If a process unable to change its waiting state indefinitely because the 

resources requested by it are held by another waiting process, then system 

is said to be in deadlock 

 

System Model 

Under the normal mode of operation, a process may utilize a resource in only the 

following sequence: 

1. Request: The process requests the resource .If the request cannot be 

granted immediately (Ex: if resources is being used by another process), 

then the requesting process must wait until it can acquire the resource. 

2. Use: The process can operate on the resource (Ex: if the resource is a 

printer , the process can print on printer) 

3. Release: The process releases the resource 

The request and release of resources may be system calls 

EX: request() and release() device 

Open () and close () file 

Allocate () and free () memory. 

The request and release of semaphore (system resource) can be accomplished 

through wait () and signal () operations. 

 

Dead lock: 

A set of process is in a deadlocked state when every process in the set is waiting 

for an event can be caused only by another process in the set.  



 

 

 

 

  

 

P1->R1->P2->R2->P3->R3->P4…………..Pn-1 ->Rn-1 ->Pn ->R1 

Necessary conditions for Deadlock: 

A deadlock situation can arise if the following four conditions hold simultaneously 

in a system. 

1. Mutual exclusion: At least one resource must be held in  a non shareable 

mode i.e only one process at a time can use the resource .If another 

process request that resource ,the requesting process must be delayed 

until the resource has been released. 

2. Hold and wait: A process must be holding at least one resource and waiting 

to acquire additional resources that are currently being held by the other 

process. 

3. No preemption: Resources cannot be preempted i.e a resource can be 

released only voluntarily by process holding it after that process has 

completed its task. 

4. Circular Wait: A set of process {p0………..Pn} of waiting processes must exist 

such that P0 is waiting for a resources held by P1, P1 is waiting for a 

resources held by P2………,Pn-1 is waiting for a resource held by Pn and Pn 

is waiting for a resource held by P0. 

 

 

 

 

         R2 

          R1 

P1 P2 

Allocated 

Requesting 

Requesting 

Allocated 

R1 R2 R3 

P1 P2 P3 

Circular Wait 



Resource –allocation Graph (RAG) or System Resource Allocation Graph 

It describes the state of the system (dead lock or not) more precisely 
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Process Vertex 
Resource 

vertex 
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● 

●   ●  ●  ● 

Multiple instances 

Pi 

Single instance  

Ex: CPU, Monitor Ex: Register 

     Edge 

Assign Edge 
Request Edge 
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R1 

P 

R 



Question: 

Check whether the system,Dead lock or Not? 

 

 

 

 

 

 

Ans:    

 

 

 

 

Availbility=(0,0) can you fulfill the request of P1 and P2(NO), it is deadlock 

 

Question: 

 

  

 

 

 

 Availability ( 0   ,      0) 

 

 

  

   ● 

  ● 

P2 
P1 

R1 

R2 

Assign 

Request 

Assign 

Request 

Process              Allocate                     Request   

                          R1     R2     R1         R2 

p1             1        0                                                                0           1 

p2                      0        1                                                               1            0           

      

● ● 

P3 P2 P1 

R1 R2 

Process              Allocate                  Request   

                          R1     R2              R1         R2 

p1             1        0                               0           0 

p2                      0        1                               0           0   

P3                     0          0                             1           1     

      

   R1 R2 

1           0      p1 

1            0 

0             1     p2 

1              1    P3 

 

 

No dead lock 

P1  p2 p3 

Acyclic graph (no circular wait) 

Check dead lock or not! 

Cyclic graph (circular wait) 



Note: 1. If there is single instance and RAG has circular wait then there is deadlock (True) 

           2. If RAG has no cycle, then no dead lock occur (True) 

           3. If there is multiple instances and RAG has circular wait then there may or may not be deadlock  

 

 

Multiple instances: 

 

 

       

 

 

 

 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   ● 

●     ● 

P2 P1 

R1 

R2 

P3 

Process              Allocate                  Request   

                          R1     R2              R1         R2 

p1             1        0                               0           1 

p2                      0        1                               1           0   

P3                     0          1                              0           0     

      

Availability( 0   ,   0  )  

P3                 0        1 

0 1 

P1                 1         0 

1 1 

P2                 0          1 

                      1          2 

No deadlock 

 



 

 

Q. 

 

 

 

 

 

 

 

 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

  

●     ● ●      ●      ● 

P1 P0 P2 P3 

●           ● 

     R1     R2 

R3 

Process              Allocate                  Request   

                          R1     R2  R3             R1         R2    R3 

P0             1        0      1                       0           1        1 

P1                      1        1      0                      1           0         0 

P2                     0         1      0                      0           0          1 

P3            0         1      0             1           2          0

  

Current Availability (0,   0, 1)  

   P2                              0,  1, 0    

                                      0,   1, 1 

  P0                                1,  0,   1 

                                       1     1   2 

P1                                   1      1   0 

                                         2      2   2 

P3                                    0      1    0 

                                        2        3    2 

No dead lock 

           



Banker’s algorithm(Avoidance Algorithm or Safety algorithm) 

The banker’s algorithm is a resource allocation and deadlock avoidance algorithm 

that tests for safety by simulating the allocation for predetermined maximum 

possible amounts of all resources, then makes an “s-state” check to test for possible 

activities, before deciding whether allocation should be allowed to continue. 

Why Banker’s algorithm is name do so? 

 

Banker’s algorithm is named so because it is used in banking system to check 

whether loan can be sanctioned to a person or not. Suppose there are n number of 

account holders in a bank and the total sum of their money is S. If a person applies 

for a loan then the bank first subtracts the loan amount from the total money that 

bank has and if the remaining amount is greater than S then only the loan is 

sanctioned. It is done because if all the account holders comes to withdraw their 

money then the bank can easily do it. 

In other words, the bank would never allocate its money in such a way that it can 

no longer satisfy the needs of all its customers. The bank would try to be in safe 

state always. 

Following Data structures are used to implement the Banker’s Algorithm: 

Let ‘n’ be the number of processes in the system and ‘m’ be the number of 

resources types. 

 

Available :  

 It is a 1-d array of size ‘m’ indicating the number of available resources of 

each type. 

 Available[ j ] = k means there are ‘k’ instances of resource type Rj 

Max : 

 It is a 2-d array of size ‘n x m’ that defines the maximum demand of each 

process in a system. 

 Max[i] [j] = k means process Pi may request at most ‘k’ instances of 

resource type Rj. 



 

 

Allocation : 

 It is a 2-d array of size ‘n x m’ that defines the number of resources of each 

type currently allocated to each process. 

 Allocation[ i][ j ] = k means process Pi is currently allocated ‘k’ instances of 

resource type Rj 

Need : 

  It is a 2-d array of size ‘nxm’ that indicates the remaining resource need of 

each process. 

 Need [ i]  [ j ] = k means process Pi currently need ‘k’ instances of resource 

type Rj for its execution. 

 Need [ i][ j ] = Max [ i][ j ] – Allocation [ i][ j ] 

 

Allocationi specifies the resources currently allocated to process Pi and 

Needi specifies the additional resources that process Pi may still request to 

complete its task. 

Banker’s algorithm consists of Safety algorithm and Resource request 

algorithm 

ALGORITHM: 

1) Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively. 

Initialize: Work = Available 

Finish[i] = false; for i=0, 1, 2, 3….n-1; 

2) Find an index i such that both 

a) Finish[i] = false 

b) Needi <= Work 

if no such i exists goto step (4) 



3) Work = Work + Allocation[i] 

Finish[i] = true 

goto step (2) 

4) if Finish [i] = =true for all i 

then the system is in a safe state  

Where m= number of resource types 

             n=number of process in the system 

Resource-Request Algorithm 

This algorithm describe whether requests can be safely granted or not!. 

Let Requesti be the request array for process Pi. Requesti [j] = k means process Pi 

wants k instances of resource type R j. When a request for resources is made by 

process Pi, the following actions are taken: 

 

1) If Requesti <= Needi 

Goto step (2) ; otherwise, raise an error condition, since the process has 

exceeded its maximum claim. 

2) If Requesti <= Available 

Goto step (3); otherwise, Pi must wait, since the resources are not available. 

3) Have the system pretend to have allocated the requested resources to 

process Pi by modifying the state as 

follows: 

Available = Available – Requesti 

Allocationi = Allocationi + Requesti 

Needi = Needi– Requesti 

 

 

 



Example: 

Considering a system with five processes P0 through P4 and three resources of type 

A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7 

instances. Suppose at time t0 following snapshot of the system has been taken: 

 

Question1. What will be the content of the Need matrix? 

Need [i, j] = Max [i, j] – Allocation [i, j] 

So, the content of Need Matrix is: 

                        

 

 



Question2.  Is the system in a safe state? If Yes, then what is the safe sequence?

 



Ex2:  

 

 

 

 

 

 

 

 

 

  

Solution: Available[m]                              n=#process=5 =  p0 to p4 

Allocation[nxm]                                         m=#resources=4= A,B,C,D 

Max [nxm] 

Need[nxm]= max-allocation 

 

 

 

 

 

  

 

Allocation               Max   Available 

A B C D   A B C D   A B C D 

P0 0 0 1 2  0 0 1 2   1 5 2 0 

P1 1 0 0 0  1 7 5 0    

P2 1 3 5 4  2 3 5 6   

P3 0 6 3 2  0 6 5 2 

P4 0 0 1 4  0 6 5 6 

 Calculate matrix need? 

 Is the system is in a safe state? 

 If p1 arrives with request (0,3,2,0) can it be granted 

immediately ? 

Need     Available 

           A  B  C  D                                                               A  B  C  D 

P0      0  0  0  0        1  5  2  0 

P1     0  7  5   0 

P2     1  0  0   2  

P3     0  0  2   0 

P4     0  6  4  2 



    Work=available 

A    B    C    D 

1     5      2      0 
0    0       1      2       p0 
1    5       3      2 
1    3       5      4       p2 
2    8       8      6 
0    6        3     2       p3 
2    14     11    8 
0     0       1      4      p4 
2     14    12   12 
1     0       0      0      p1                safe sequence is<p0,p2,p3,p4,p1> 
3     14     12   12 
 
If p1 arrives with request (0,3,2,0) can it be granted immediately: YES 

  index            Finish  

0 F    T 

1 F     T 

2 F     T 

3 F     T 

4 F     T 


	Q.A Counting Semaphore was initialized to 12. then 10P (wait) and 4V (Signal) operations were computed on this semaphore. What is the result?

