
 Operating System (5th semester)

Prepared by SANJIT KUMAR BARIK (ASST PROF, CSE)

 MODULE-II

TEXT BOOK:

1. Operating System Concepts – Abraham Silberschatz, Peter Baer Galvin,

Greg Gagne, 8th edition, Wiley-India, 2009.

2. Mordern Operating Systems – Andrew S. Tanenbaum, 3rd Edition, PHI

3. Operating Systems: A Spiral Approach – Elmasri, Carrick, Levine, TMH

Edition.

DISCLAIMER:

“THIS DOCUMENT DOES NOT CLAIM ANY ORIGINALITY AND CANNOT BE USED AS A

SUBSTITUTE FOR PRESCRIBED TEXTBOOKS. THE INFORMATION PRESENTED HERE IS

MERELY A COLLECTION FROM DIFFERENT REFERENCE BOOKS AND INTERNET

CONTENTS. THE OWNERSHIP OF THE INFORMATION LIES WITH THE RESPECTIVE

AUTHORS OR INSTITUTIONS.”

Process Synchronization:

Process synchronization means sharing system resources by process in a such way

that concurrent access to shared data is handled thereby minimizing the chance

of inconsistent data.

 Maintaining data consistency demands mechanisms to ensure synchronized

execution of co-operating processes.

Critical section problem

A critical section is a code segment that accesses shared variables and has

to be executed as an atomic action. It means that in a group of co-operating

processes, at a given point of time, only one process must be executing its

critical section. If other processes also want to execute its critical section, it

must wait until the first one finishes.

Critical section:

It is the part of the program where shared resources are accessed by

various processes.

It is the place where shred variable, resources are placed.

do

Entry section

Critical section

Exit section

Remainder section

While (True);

Rest of the section

The critical part

Controls the entry into critical section

and gets a Lock on required resources.

Removes the lock

from the resources

and let the others

know that its critical

section is over

General structure of a typical process Pi

Solution to Critical section Problem

A solution to the critical section problems must satisfy the following three

conditions:

1. Mutual exclusion

2. Progress

3. Bounded waiting

4. No assumption related to H/W speed

1. Mutual exclusion

Out of a group of co-operating processes, only one process can be in its

critical section at a given point of time.

2. Progress:

If no process is in its critical section and if one or more process wants to

execute in critical section than one of these process must be allowed to get

into its critical section.

3. Bounded waiting:

After a process makes a request for getting into its critical section, there

is a limit for how many other processes can get into their critical section,

before this process’s request is granted. So after the limit time is

reached, system must grant the process permission to get into its critical

section.

4. No assumption related to H/W speed

Synchronization H/W:

Many systems provide H/W support for critical section code. The critical

section problem could be solved easily in a single –processor

environment if we could disallow interrupts to occur while a shred

variable or resources is being modified.

In this manner, we could be sure that the current sequence of

instruction would be allowed to execute in order without preemption.

 Unfortunately, this solution is not feasible in a multiprocessor

Environment.

 Disabling interrupt on a multiprocessor environment can be time

consuming as the message is passed to all the processors.

Mutex Locks

As the synchronization H/W solution is not easy to implement for everyone,

a strict S/w approach called Mutex Locks was introduced. In this approach,

in the entry section code, a Lock is required over critical resources modified

and used inside critical section and in the exit section that Lock is released.

As the resources are locked while a process executes its critical section

hence no other process can access it.

Two process solution:

This algorithm is restricted only for two (P0, P1) process. Processes may

share some common variables to synchronize their actions.

The process are numbered P0 and P1 . In general if one process is Pi then

other one is Pj where j=1-i.

Algorithm-1

Share variable :int turn

The value of turn either 0 or 1

Initially , turn is set to 0(turn=0)

If turn ==i, then Pi can enter it critical section.

The structure of process Pi

while (True)
{
while(turn != i);
critical section.
turn=j
remainder section
}

Explanation:

 It satisfies the mutual exclusion but not progress because it

always depends on other process.

 Mutual exclusion is preserved

 The progress requirement is not satisfied.

Algorithm2

Shared variables
Boolean falg[2];
Initially flag[0]=flag[1]=false;
If flag[i]=true Pi is ready to enter its critical section .

while (true)
{
flag [i]=true.
while (flag[i]);
critical section.
flag[i]=false;
Remaider section.
}

P0 P1

While(1) while(1)
{ { while(turn!=1);
While(turn!=0); critical section
Critical section Turn=0;
Turn=1;
Remainder section Remainder section
} }

Turn=0

Explanation:

 In this algorithm:

1. Mutual exclusion is preserved

2. The progress requirement is not satisfied

(Since flag [0] =true and flag [1] =true; p0 and p1 are looping forever in

their respective while statements

Algorithm3(Peterson’s Solution)

Shared variables

by combining the key ideas of algorithm1 and 2 .

Boolean flag[2];

int turn

P0 P1

while(1) while(1)
{ { flag[1]=T
flag[0]=T
while(flag[1]); while(flag[0]);
critical section critical section
 flag[0]=F flag[0]=F

} }

 flag

0 1

F F

Structure of Pi

while (True)

{

flag[i]=true;

Turn =j;

while ((turn==j && flag[j]==T);

critical section;

flag[i]=false;

Remainder section;

}

Explanation:

1. Mutual exclusion is preserved

2. The progress requirement is satisfied

3. The bounded –waiting requirement is met.

P0

while(1)
{
flag[0]=T
turn=1;
while (turn==1 and
flag[1]==T);
critical section
flag[0]=F
}

P1

while(1)
{
flag[1]=T
turn=0;
while (turn==0 and
flag[0]==T);
critical section
flag[1]=F
}

Set

flag

 Turn =0 / 1

0 1

 F F

Semaphore

Dijkstra proposed the concept of semaphore in 1965. Semaphore provides

general purpose solution to impose mutual exclusion among concurrently

executing processes, where many processes want to execute in their critical

section but only one at a time is allowed and rest all other are excluded.

A semaphore basically consists of an integer variable S, shared by processes.

S is a protected variable that can only be accessed and manipulate by two

operation:- wait() and signal() originally defined P(for wait) and V(for signal) by

Dijkstra.

 Wait() and signal() are semaphore primitives

 The wait is sometimes called down() and signal is called up().

 Each semaphore has a queue associated with it known as semaphore

queue

 The wait and signal primitives ensures that one process at a time enters in

its critical section and rest all other processes wanting to in their critical

sections are kept waiting in the semaphore queue.

A semaphore S is an integer variables that, apart from initialization, is

accessed only through two standard atomic operations i.e wait () and signal

().

Here wait means to test and signal means to increment

The classical definition of wait() is :

wait()

{

while (S<=0);

//busy wait

S=S-1;

}

Let us see how it implements mutual

exclusion. Let there be two

processes P1 and P2 and a

semaphore s is initialized as 1. Now

if suppose P1 enters in its critical

section then the value of semaphore

s becomes 0. Now if P2 wants to

enter its critical section then it will

wait until s > 0, this can only happen

when P1 finishes its critical section

and calls V operation on semaphore

s. This way mutual exclusion is

achieved.

The classical definition of signal() is:

signal()

{

S=S+1;

}

All modification to the integer value of the semaphore in the wait() and signal()

operations must be executed indivisibly: i.e when one process modifies the

semaphore value no other process can simultaneously modify that same

semaphore value.

In addition, in the case of wait(S), the testing of the integer value of S i.e S<=0, as

well as its possible modification(S--), must be executed without interruption.

Do

Entry section

Critical section

Exit section

Remainder section

While (True);

Rest of the section

The critical part

Controls the entry into critical section

and gets a Lock on required resources.

Removes the lock

from the resources

and let the others

know that its critical

section is over

General structure of a typical process Pi

Wait()

Signal ()

Properties of semaphore:

1. It is simple and always have a non-negative integer value

2. Works with many processes

3. Can have many different critical sections with different semaphores

4. Each critical section has unique access semaphores.

5. Can permit multiple processes into critical section at once, if desirable.

6. Solution to critical section

7. Act as resource management

8. It also decide the order of execution among the process(n-process)

Usage of semaphore

1. Counting semaphore

2. Binary semaphore

1. Counting semaphore:

 The value of counting semaphore can range over an unrestricted domain(-

∞ to ∞)

 Counting semaphores can be used to control access to a given resource

consisting of finite number of instances.

 The semaphore is initialized to the number of resources available.

 Each processes that wishes to use a resource performs a wait() operation

on the semaphore (thereby decrementing the count)

 When a process releases a resource, it performs a signal () operation

(incrementing the count).

 When a count for the semaphore goes to all ’0’,all resources are being

used.

 After that, processes that wish to use a resource will block until the count

becomes greater than ‘ 0’.

2. Binary semaphore:

This is also known as mutex lock. It can have only two values – 0 and 1. Its

value is initialized to 1. It is used to implement the solution of critical

section problem with multiple processes.

Implementation semaphore(counting semaphore)

Semaphore is defined as:
typedef struct

{

int count;

struct processQueue queue;

}semaphore;

The wait is defined as:

wait(semaphore S)

{

S.count--;

if(S.count<0)

{

/*perform block operation and move the process to the semaphore queue*

or put process(PCB) in suspended list/

 sleep() or block ();

}

}

The signal is defined as:

Signal(S)

{

S.count++;

If(S.count<=0)

{

/* semaphore queue is not empty, perform wakeup and move the first

process from semaphores queue to the ready queue or remove a process

(P) from suspended list*/

wakeup(P);

}

}

while (true)

{

//entry section

Wait(S);

<Critical section>

//exit section

Signal(S);

}

Initially the value of semaphore variables S.count=1;

Let P1,P2,P3

S.count For P1

Wait(S) Signal(S)

S.count-- If(s.count<0

) move the

process to

the

semaphore

queue

S.count++ If(S.count<=0)

Move the first process from

semaphore queue to the ready

queue

1 0 false - -

 So P1 enters in its critical section and value of S.count=0

Mean while P2 also enters it its critical section

 For P2

Wait(S) Signal(S)

s.count-- If(s.count<0

) move the

process to

the

semaphore

queue

S.count++ If(S.count<=0)

Move the first process from

semaphore queue to the ready

queue

-1 true - -

 Mean while P3 also enters it its critical section

 For P1

Wait(S) Signal(S)

s.count-- If(S.count<

0) move

the process

to the

semaphore

queue

S.count++ If(S.count<=0)

Move the first process from

semaphore queue to the ready

queue

-1 -2 true - -

 Mean while P1 finish its execution in its critical section and is in exit section

0

Semaphore

Queue

P2

P3

 For P1

Wait(S) Signal(S)

S.count-- If(s.count<0

) move the

process to

the

semaphore

queue

S.count++ If(S.count<=0)

Move the first process from

semaphore queue to the ready

queue

-2 - - -1 True, so the moves first

process P2 from

semaphore queue to the

ready queue

S.count Mean while P2 finish its execution in its critical section and is in exit section

 For P2

Wait(S) Signal(S)

S.count-- If(S.count<0)

move the
process to the
semaphore
queue

S.count++ If(S.count<=0)

Move the first process from
semaphore queue to the ready
queue

-1 - - 0 True, so the moves first process P3
from semaphore queue to the ready
queue

So P3 enters into its Critical section and value of S.count=0

NOW P3 finish its execution in its critical section and is in exit section

 For P3

S.count For P3

Wait(S) Signal(S)

S.count-- If(s.count<0

) move the

process to

the

semaphore

queue

S.count++ If(S.count<=0)

Move the first process from

semaphore queue to the ready

queue

0 - - 1 -

 When all the process in the semaphore queue are finished, means semaphore queue are
empty, the semaphore variable S.count again return to its initial value 1

 The concept of semaphore queues ensures that no process go into

busy waiting. Busy waiting is a condition in which if one process

is executing in its critical section any other process wants to enter
in its critical section then that process needs to check some

condition in its entry section in continuous loop. This continuous

looping is wastage of CPU cycle in a multiprogramming system
where that CPU cycle can be used for some other productive work.

The process waiting to execute in its critical section is moved to

the semaphore queue till it get a chance to enter in its critical
section without CPU engagement and this saves lot of CPU Time.

 Moving the process to the semaphore queue is called block()

operation and changes the state of that process from running state

to waiting state. Likewise removing the process from semaphore
queue and placing it in the ready queue is called wakeup(). The

wakeup() operation resumes the process from waiting state to

ready state so that process can enter in its critical section. Both
block and wakeup() operations are performed by the operating

system as a basic system call.

Q.A Counting Semaphore was initialized to 12. then 10P (wait) and

4V (Signal) operations were computed on this semaphore. What is
the result?

Ans: S = 12 (initial)

10 p (wait) :

SS = S -10 = 12 - 10 = 2

then 4 V :

SS = S + 4 =2 + 4 = 6

Hence, the final value of counting semaphore is 6.

Binary Semaphore Implementation:

Down (semaphore S)

{

if(S.value==1)

{

S.value=0;

}

else

{

/*perform block operation and move the process to the

semaphore queue* or put process(PCB) in suspended list/

 Sleep() or block ();

 }}

Up(semaphore S)

{

if (semaphore queue is empty)

{

S.value=1;

}

else

 {

 /* semaphore queue is not empty, perform wakeup() and move the first

process from semaphores queue to the ready queue or remove a process (P) from

suspended list*/

 wakeup(P);

 }

}

P1

Down(s)

CS

Up(S)

P2

Down(s)

CS

Up(S)

Let S.vaue=1

Classical problem of Synchronization:

 OR

Classical problem in Concurrency

 Reader –Writers problem

 Dining Philosopher Problem(Assignment)

 Sleeping Barber Problem(Assignment)

Reader –Writers problem

Definition: There is a data containing some files ,records etc that is shared among

the number of concurrent processes. The processes that reads the data from that

common shared data area are called reader processes and processes that perform

write operation(writing new data value or updating or modifying the data value) on

the data stored in common shared data area are called writer processes. The

various conditions that need to take care in Reader-writer case are:

 Any number of reader processes can simultaneously read the data from

common shared data area but only one writer at a time may write to that

common shared data area.

 If any of the writer process is writing to common shared data area, then no

reader processes are allowed to read it till the writer process has finished.

 If there is at least one reader reading the common data area,no writer

processes are allowed to that common data area.

The reader-writer problem solution using semaphores consists of two binary-

semaphores- mutex and rw_mutex and one integer variable

NumberOfReaders(rc).The semaphore rw_mutex is shared by the all the processes

and the semaphore mutex and the integer variable NumberOfReaders(rc) is shared

by reader processes only. Here, variable NumberOfReaders(rc) keep track of how

many reader processes are reading the common shared data at a time, and mutex

provide mutual exclusion among reader processes when variable

NumberOfReaders(rc) is incremented or decremented .The semaphore rw_mutex

which is common to both readers and writers processes ensures that when one

writer process is using the common data area, no other reader or writer processes

can access that common data area.

void Reader ()

{

while (true)

{

Down (mutex)

rc=rc+1;

if(rc==1) Down (rw_mutex);

 UP(mutex);

Down(mutex);

rc=rc-1;

if (rc==0) then UP(rw_mutex);

UP(mutex);

Process_data;

}

}

void Writer()

{

while true()

{

Down (rw_mutex);

UP(rw_mutex);

}

}

Case 1: R-W->Problem

Case 2: W-R->Problem

Case 3: W-W->Problem

Case4: R-R->No Problem

READER PROCESS WRITER PROCESS

int rc=0

Semaphore mutex =1;
Semaphore rw_mutex=1;

//Critical section

//Database

//Critical section

//Database

Dead Lock

 In a multiprogramming system, a number process compete for limited no.of

resources and if a resources is not available at that instance then process

enters into waiting states

 If a process unable to change its waiting state indefinitely because the

resources requested by it are held by another waiting process, then system

is said to be in deadlock

System Model

Under the normal mode of operation, a process may utilize a resource in only the

following sequence:

1. Request: The process requests the resource .If the request cannot be

granted immediately (Ex: if resources is being used by another process),

then the requesting process must wait until it can acquire the resource.

2. Use: The process can operate on the resource (Ex: if the resource is a

printer , the process can print on printer)

3. Release: The process releases the resource

The request and release of resources may be system calls

EX: request() and release() device

Open () and close () file

Allocate () and free () memory.

The request and release of semaphore (system resource) can be accomplished

through wait () and signal () operations.

Dead lock:

A set of process is in a deadlocked state when every process in the set is waiting

for an event can be caused only by another process in the set.

P1->R1->P2->R2->P3->R3->P4…………..Pn-1 ->Rn-1 ->Pn ->R1

Necessary conditions for Deadlock:

A deadlock situation can arise if the following four conditions hold simultaneously

in a system.

1. Mutual exclusion: At least one resource must be held in a non shareable

mode i.e only one process at a time can use the resource .If another

process request that resource ,the requesting process must be delayed

until the resource has been released.

2. Hold and wait: A process must be holding at least one resource and waiting

to acquire additional resources that are currently being held by the other

process.

3. No preemption: Resources cannot be preempted i.e a resource can be

released only voluntarily by process holding it after that process has

completed its task.

4. Circular Wait: A set of process {p0………..Pn} of waiting processes must exist

such that P0 is waiting for a resources held by P1, P1 is waiting for a

resources held by P2………,Pn-1 is waiting for a resource held by Pn and Pn

is waiting for a resource held by P0.

 R2

 R1

P1 P2

Allocated

Requesting

Requesting

Allocated

R1 R2 R3

P1 P2 P3

Circular Wait

Resource –allocation Graph (RAG) or System Resource Allocation Graph

It describes the state of the system (dead lock or not) more precisely

Vertex

Process Vertex
Resource

vertex

●

●

● ● ● ●

Multiple instances

Pi

Single instance

Ex: CPU, Monitor Ex: Register

 Edge

Assign Edge
Request Edge

 P

R1

P

R

Question:

Check whether the system,Dead lock or Not?

Ans:

Availbility=(0,0) can you fulfill the request of P1 and P2(NO), it is deadlock

Question:

 Availability (0 , 0)

 ●

 ●

P2
P1

R1

R2

Assign

Request

Assign

Request

Process Allocate Request

 R1 R2 R1 R2

p1 1 0 0 1

p2 0 1 1 0

● ●

P3 P2 P1

R1 R2

Process Allocate Request

 R1 R2 R1 R2

p1 1 0 0 0

p2 0 1 0 0

P3 0 0 1 1

 R1 R2

1 0 p1

1 0

0 1 p2

1 1 P3

No dead lock

P1 p2 p3

Acyclic graph (no circular wait)

Check dead lock or not!

Cyclic graph (circular wait)

Note: 1. If there is single instance and RAG has circular wait then there is deadlock (True)

 2. If RAG has no cycle, then no dead lock occur (True)

 3. If there is multiple instances and RAG has circular wait then there may or may not be deadlock

Multiple instances:

Solution:

 ●

● ●

P2 P1

R1

R2

P3

Process Allocate Request

 R1 R2 R1 R2

p1 1 0 0 1

p2 0 1 1 0

P3 0 1 0 0

Availability(0 , 0)

P3 0 1

0 1

P1 1 0

1 1

P2 0 1

 1 2

No deadlock

Q.

Solution:

● ● ● ● ●

P1 P0 P2 P3

● ●

 R1 R2

R3

Process Allocate Request

 R1 R2 R3 R1 R2 R3

P0 1 0 1 0 1 1

P1 1 1 0 1 0 0

P2 0 1 0 0 0 1

P3 0 1 0 1 2 0

Current Availability (0, 0, 1)

 P2 0, 1, 0

 0, 1, 1

 P0 1, 0, 1

 1 1 2

P1 1 1 0

 2 2 2

P3 0 1 0

 2 3 2

No dead lock

Banker’s algorithm(Avoidance Algorithm or Safety algorithm)

The banker’s algorithm is a resource allocation and deadlock avoidance algorithm

that tests for safety by simulating the allocation for predetermined maximum

possible amounts of all resources, then makes an “s-state” check to test for possible

activities, before deciding whether allocation should be allowed to continue.

Why Banker’s algorithm is name do so?

Banker’s algorithm is named so because it is used in banking system to check

whether loan can be sanctioned to a person or not. Suppose there are n number of

account holders in a bank and the total sum of their money is S. If a person applies

for a loan then the bank first subtracts the loan amount from the total money that

bank has and if the remaining amount is greater than S then only the loan is

sanctioned. It is done because if all the account holders comes to withdraw their

money then the bank can easily do it.

In other words, the bank would never allocate its money in such a way that it can

no longer satisfy the needs of all its customers. The bank would try to be in safe

state always.

Following Data structures are used to implement the Banker’s Algorithm:

Let ‘n’ be the number of processes in the system and ‘m’ be the number of

resources types.

Available :

 It is a 1-d array of size ‘m’ indicating the number of available resources of

each type.

 Available[j] = k means there are ‘k’ instances of resource type Rj

Max :

 It is a 2-d array of size ‘n x m’ that defines the maximum demand of each

process in a system.

 Max[i] [j] = k means process Pi may request at most ‘k’ instances of

resource type Rj.

Allocation :

 It is a 2-d array of size ‘n x m’ that defines the number of resources of each

type currently allocated to each process.

 Allocation[i][j] = k means process Pi is currently allocated ‘k’ instances of

resource type Rj

Need :

 It is a 2-d array of size ‘nxm’ that indicates the remaining resource need of

each process.

 Need [i] [j] = k means process Pi currently need ‘k’ instances of resource

type Rj for its execution.

 Need [i][j] = Max [i][j] – Allocation [i][j]

Allocationi specifies the resources currently allocated to process Pi and

Needi specifies the additional resources that process Pi may still request to

complete its task.

Banker’s algorithm consists of Safety algorithm and Resource request

algorithm

ALGORITHM:

1) Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively.

Initialize: Work = Available

Finish[i] = false; for i=0, 1, 2, 3….n-1;

2) Find an index i such that both

a) Finish[i] = false

b) Needi <= Work

if no such i exists goto step (4)

3) Work = Work + Allocation[i]

Finish[i] = true

goto step (2)

4) if Finish [i] = =true for all i

then the system is in a safe state

Where m= number of resource types

 n=number of process in the system

Resource-Request Algorithm

This algorithm describe whether requests can be safely granted or not!.

Let Requesti be the request array for process Pi. Requesti [j] = k means process Pi

wants k instances of resource type R j. When a request for resources is made by

process Pi, the following actions are taken:

1) If Requesti <= Needi

Goto step (2) ; otherwise, raise an error condition, since the process has

exceeded its maximum claim.

2) If Requesti <= Available

Goto step (3); otherwise, Pi must wait, since the resources are not available.

3) Have the system pretend to have allocated the requested resources to

process Pi by modifying the state as

follows:

Available = Available – Requesti

Allocationi = Allocationi + Requesti

Needi = Needi– Requesti

Example:

Considering a system with five processes P0 through P4 and three resources of type

A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7

instances. Suppose at time t0 following snapshot of the system has been taken:

Question1. What will be the content of the Need matrix?

Need [i, j] = Max [i, j] – Allocation [i, j]

So, the content of Need Matrix is:

Question2. Is the system in a safe state? If Yes, then what is the safe sequence?

Ex2:

Solution: Available[m] n=#process=5 = p0 to p4

Allocation[nxm] m=#resources=4= A,B,C,D

Max [nxm]

Need[nxm]= max-allocation

Allocation Max Available

A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0

P1 1 0 0 0 1 7 5 0

P2 1 3 5 4 2 3 5 6

P3 0 6 3 2 0 6 5 2

P4 0 0 1 4 0 6 5 6

 Calculate matrix need?

 Is the system is in a safe state?

 If p1 arrives with request (0,3,2,0) can it be granted

immediately ?

Need Available

 A B C D A B C D

P0 0 0 0 0 1 5 2 0

P1 0 7 5 0

P2 1 0 0 2

P3 0 0 2 0

P4 0 6 4 2

 Work=available

A B C D

1 5 2 0
0 0 1 2 p0
1 5 3 2
1 3 5 4 p2
2 8 8 6
0 6 3 2 p3
2 14 11 8
0 0 1 4 p4
2 14 12 12
1 0 0 0 p1 safe sequence is<p0,p2,p3,p4,p1>
3 14 12 12

If p1 arrives with request (0,3,2,0) can it be granted immediately: YES

 index Finish

0 F T

1 F T

2 F T

3 F T

4 F T

	Q.A Counting Semaphore was initialized to 12. then 10P (wait) and 4V (Signal) operations were computed on this semaphore. What is the result?

